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Because the mechanical responses of polymers and many types of polymer composites are in the large deformation range, the
Eulerian or Lagrangian concept is required for measuring the stress and strain. On the other hand, developing a large
deformation based constitutive model requires a number of considerations, and should be performed from a thermodynamics
point of view to study the motion of each component of the material. Even though such approach is precise and physically
sound, it is limited to just one type of material. Furthermore, polymers show high dependency to the rate and time of the applied
load; hence, employing viscoelastic, viscoplastic and viscodamage models is necessary. To address these issues, a consistent
framework is developed to generalize elastic/viscoelastic and plastic/viscoplastic models from small strain to the large
deformation range. The developed continuum based approach allows one to obtain meaningful measures of stress and strain in
large strain predictions. Such generalization is mandatory for investigating the behavior and response of polymer composites.
Through the use of this method, which is based on Green-Lagrange strain and second Piola-Kirchhoff stress, the existing small
strain models can be extended to a large deformation concept, such that the structure of the constitutive models are the same
as their small strain identities.
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ABSTRACT

This dissertation is devoted to the virtual investigation of the mechanical
behavior of micro/nano polymer composites (MNPCs). Advanced composite materials
are favored by the automotive industry and army departments for their customizable
tailored properties, especially for strength and ductility compared to pure polymer
matrices. Their light weight and low finished cost are additional advantages of these
composite materials.

Many experimental and numerical studies have been performed to achieve the
optimized behavior of MNPCs by controlling the microstructure. Experiments are costly
and time consuming for micro scale. Hence, recently numerical tools are utilized to help
the material scientists to customize and optimize their experiments.

Most of such numerical studies are based on characterizing the MNPCs through
simple microstructures, as circular particles or straight fibers embedded in a specific
polymer matrix. Although these geometries are effective in virtual modeling some types
of composite material behavior, they fail to address some critical key micro-structural
features, which are important for our goals. Firstly, they fail to properly address the
randomness of particles. Secondly, 2D analyses have limitations and they can provide
qualitative insight, rather than evaluate the quantitative response of the material
behavior. Thus, in order to fill this gap, a user friendly software program, REV_ Maker,
is developed in this project for generating 2D and 3D RVEs (representative volume

elements) to precisely represent the morphology of material in microstructural level.

il



In models, polymers are usually considered as viscoelastic-viscoplastic or
hyperelastic-viscoplastic materials without taking into account viscodamage models.
Therefore, in this work rate- and time-dependent damage (viscodamage) is separately
considered to fully investigate the initiation and growth of damage inside polymer
composites.

Besides, most of the common viscoelastic and viscoplastic models assumes small
deformation; therefore, in this dissertation a procedure is established, which incorporates
all required modifications to generalize a small strain constitutive model to its identical
large deformation range. Thus, here a straightforward generalization and implementation
method based on classical continuum mechanics is proposed, which due to its simplicity,
can be applied to a wide range of elastoplastic constitutive models. Then, the available
viscoelastic and viscoplastic models are extended to large strain framework. By applying
the generalized viscous models, one may address and measure the large deformation
response of MNPCs.

Numerous simulations were conducted to predict the overall responses of
micro/nano composites with different morphologies (particles volume fractions,
orientations, and combinations). The effect of each particle, and the combination of

particles on the composite responses are compared and presented.

il
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